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Abstract

A boundary-layer transition study over a compression comer was conducted under a

hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full

Navier-Stokes equations were solved to simulate the development of disturbance in the

boundary layer. A linear stability analysis and PSE method were used to get the initial

disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to

solve the full Navier-stokes by using WENO(weighted essentially non-oscillating)

scheme. The given numerical results show the evolution of the linear disturbance for the

most amplified disturbance in supersonic and hypersonic flow over a compression ramp.

The nonlinear computations also determined the minimal amplitudes necessary to cause

transition at a designed location.

Introduction

It is well known that boundary layer transition has a dramatic influence on aerodynamic

behavior of hypersonic aircraft. Both static and dynamic stability of such vehicles depend

on the spatial distribution and location of the laminar to turbulent transition. The

prediction of laminar to turbulent transition in hypersonic boundary layers is a critical

part of the aerodynamic design and control of hypersonic vehicles. In general, the

transition is a result of nonlinear response of the laminar boundary layers to forcing

disturbance. It follows five stages: 1) Receptivity. 2) Linear instability. 3) Nonlinear

stability and saturation. 4) Secondary instability. 5) Breakdown to turbulence. The

receptivity of boundary layers to disturbance is the process of converting environmental

disturbance into instability waves in the boundary layers. The receptivity mechanism

provides important initial conditions in terms of amplitude frequency and phase for the

instability wave in the boundary layers. In quiet environments, the initial amplitudes of

these unstable waves are small compared to any characteristic velocity and length scale in

the flow. Goldstein I theoretically explained using asymptotic methods how the Tollmien-

Schlicting waves are generated near a leading edge of a flat plate by the long wavelength

acoustic disturbance and also showed the development of these waves in the boundary

layer at their initial stage. In last few decades, linear stability theory 2 and PSE 3 methods

had been used extensively to analyze the transition process in incompressible and

compressible flat-plate and axis-symmetric boundary layers. The transition onset point



can be predicted using the N-factor method. However, linear theory is applicable only to

some specific transition problems, and even then it describes just the first stage of

transition, that is, the slow growth of the primary instability. Subsequent stages are due to

nonlinear interactions. Especially for boundary layer flows with discontinuities, the linear

stability theory and the PSE method cease to be valid. Due to the existence of interaction

between shock and boundary layer, the evolution of disturbance in the boundary layer

will be nonlinear. So a full Navier-Stokes equation should be solved to find the evolution

of disturbance.

In this study, we will investigate the instability and the transition onset point in the

supersonic and hypersonic flows over a compression corner as shown in Fig. 1 by solving

full Navier-Stoks equations. A fifth-order WENO scheme 4'5 had been used to accurately

compute the physical shock interaction with boundary layer and also the development of

instability waves in the boundary. From these numerical results, th_ minimal amplitudes

necessary to cause transition at a designated location can be determined. This

investigation will also improve our understanding of the effects of corner shocks which

exist in most of the hypersonic and supersonic vehicles on the transition onset point.

Formulations and numerical methods

The governing equations are the unsteady full two-dimensional compressible Navier-

Stokes equation. It can be written for computation in conservation form as following:
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The gas is assumed to be thermally and calorically perfect. The viscousity and heat

conductivity coefficients are calculated using Sutherland's law together with a constant

Prandtl number Pr" The variables p, p, T, and velocity are non-dimensionalized by

their corresponding reference variables p=, p=, T and R__ respectively. The



referencevalue for length is computedby .f-_/U=, where x 0 is the location of the

leading edge of the comer.

In order to simulate the propagation of disturbance in the boundary layer by direct

numerical simulation, an initial small disturbance should be added to the uniform steady

flow at the leading edge of the comer. This initial disturbance is produced by linear

stability theory or PSE method in the boundary layer. It was superimposed on the steady

uniform flow according to the following rule.

ft'(x, y, t) = fi(y)e ic_-i_ + fi* (y)e -ia_+i_

Where, a' is the wave number in the streamwise direction, co is the disturbance

frequency.

In order to discern the small disturbance from the mean flow, a high order accurate

scheme is necessa_,. In this study a fifth order WENO scheme was used for spatia!

discrete and three stage TVD Runge-Kutta for time iterations. The mean flow is obtained

at first by steady computation, then by adding the initial disturbance profile to the mean

flow at the leading edge and begin marching along the time step, we can simulate the

propagation of initial disturbance along the streamwise direction in the boundary layer.

Results and discussions

1 Steady Solution

In order to simulate the disturbance propagation in the boundary layer, a steady result

for hypersonic flow going through the compression comer should be obtained first. The

grid for computation is shown as Fig.1. Here a 1001x301 grid is used. This grid is

generated by potential and stream function method and is strctched close to the wall.
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Fig. 1 The computation grid Fig. 2 The contour of velocity in y direction



Theflow is initially undisturbed,that is, only a boundarylayer flow over thecomer is

present.This undisturbedflow field is obtainedby numerically solving the full two-

dimensionalcompressibleNavier-stoksequation.The results of the mean flow are

illustratedby Fig.2-6.The velocity contour is plotted as in Fig. 2. It canbe seenthat

acrossthe comer, a shock is produced. The density contour and Mach contour are given

in Fig. 3 and Fig.4 respectively. The pressure distribution along the wall of comer is

plotted as Fig. 5. The stream lines close to the comer vertex point are shown in Fig.6. It

can be seen that a flow separation bubble is produced across the comer. The pressure is

increased in the separation bubble to form an adverse pressure gradient so that a reverse

flow in the separation bubble is produced. It is the interaction between the shock and

vortex, which produce the non-linear influence on disturbance propagation downstream.

The location of the separation and reattachment has a big influence on the transition of

comer flow from laminar flow to turbulence.
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2 Compare parallel result with that of linear stability theory
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Fig. 7 Disturbance along x direction Fig. 8 Disturbance profile at x=9.0

Because the linear stability theory is a well developed method for flat plate transition

problem, it can be used to check the code validation. A direct numerical simulation is

first conducted for the parallel flow going through the flat plate and then we compare its

results with that of linear stability theory. Fig.7 and Fig.8 show the comparison between

the results of these two methods. It can be seen that the results of direct numerical

simulation fit well with the results of linear stability theory.

3 Compare non-parallel result with that of PSE method

In spite of the qualitative success of assumption of the parallel flow, the parallel stability

theory does not explain some important phenomena, and the experiments have shown

systematic difference with the theory. Apart from predicting a minimum critical Reynolds

number that is lower than that given by the parallel stability theory, evidence from

experiments shows that the growth rate of the disturbance is not only a function of the

coordinate normal to the wall, but is also different for different streamwise location. So a

non-parallel stability result is preferred to predict the transition in boundary layer. In this

study, a comparison between the results of non-parallel numerical simulation and PSE

method had been sought for a supersonic flow to go through a flat plate. Fig. 9 shows the

comparison of maximal disturbance value of density and velocity in streamwise direction,

which are obtained by PSE and non-parallel DNS method respectively. It can be seen

from these two figures that the results of these two methods are very close to each other.

This gives a code validity verification for full Navier-Stokes computation to take account

the influence of boundary layer increasing on disturbance propagation.
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Fig. 9 Comparison of maximal disturbance value between DNS and PSE

4 Instability simulating in the boundary ,,,:,,,_..... of the comer

After a validation check of the code by linear stability theory and PSE method, next we

can conduct a direct numerical simulation of the boundary layer instability for hypersonic

flow over a compression comer. The motivation of this work is to determine the flow

condition in front of the inlet to the propulsion system in the X-31 flight vehicle in the

flight conditions without any tripping devices and also to determine what is the efficient

way to cause the transition before the inlet. The configuration of the comer and

computation grid is illustrated as Fig.1. The deflection angle of the comer is 5 °. The

incoming flow Mach number is 5.373. The initial disturbance is introduced at the leading

edge of the comer by PSE method. Fig. 10 shows the initial velocity disturbance profiles

in x direction and y direction receptively. It can be seen that the disturbance will

disappear outside the boundary layer.
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Fig. 11 The density disturbance with F=0.85x10 -4, Amp=0.0001

01

0,075

0.05

0.025

i
_o

.0.025

-005

-0.075

10

0.04

0.03

DlaCurbarmeat the Wall
F=0.80E-4 002 F=(_.80E-4

0.01

O 0
n"

-0.01

-0.02

-0.03

-0,04

-0.05
12 14 16 10 12 14

X X

Fig. 12 The density disturbance with F=0.80x 10 -4, Amp=0.0001
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In this study, several computational cases have been unde_aken for different

disturbance frequency and initial disturbance amplitude to show the influence of the

frequency and amplitude on disturbance propagation in the boundary layer of the comer.

Fig.l 1-14 shows the maximal density disturbance amplitude growth and the density

disturbance growth at the wall with the same initial disturbance amplitude and different

dimensionless disturbance frequency. In the cases when the frequency is between

0.85x10 4 and 0.75x10 4, the disturbance is unstable and keeps growing downstream in

the boundary layer. But in the separation bubble region, the disturbance is saturated and

grows again after the separation region. In the case of F=0.70xl0 -4, the disturbance is

stable, but it grows in the separation bubble region and begin decaying at small distance

after the separation bubble region.
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Fig.15 shows the disturbance propagation in the boundary layer with the same

disturbance frequency F=0.65x10 -4 but with different initial disturbance amplitude. It can

be seen from these figures that the disturbance decay first before it reaches the separation

bubble region, but it becomes unstable in the separation bubble region. After a small

saturation at some distance after the separation region, the disturbance grows again. With

much bigger initial disturbance amplitude, the disturbance amplitude will reach to big

enough at some specific downstream location to produce a nonlinear saturation. A

secondary instability will begin to take effect. So by choosing the appropriate initial

disturbance amplitude, we can make transition develop at some specific location.

Concluding remarks

The boundary layer instability over a two-dimensional compression corner under the

hypersonic flow condition is _tudied hy so!ving the rill Navier-Stoke._ equation in this

study. The computational validation is checked by comparing parallel and non-parallel

results for flow over a flat plate with that of the linear stability theory and PSE method

respectively. By the direct numerical simulating, the disturbance propagating procedure

in the boundary layer flow with discontinuity could be understood in detail. According to

the results, it can be seen that the separation bubble has a significant influence on the

disturbance propagation in the boundary layer of the compression corner. In this region,

disturbance becomes unstable when the disturbance frequency is below 0.70x10 4. The

minimal disturbance amplitude at the leading edge to cause transition at some specific

location downstream can be determined by the direct numerical simulation. So the direct

numerical simulation for full two-dimensional compressible Navier-Stokes shows a basic

picture for the disturbance propagation in the boundary layer with flow discontinuity. But

more computational cases are needed to study the influence of different disturbance

frequency and initial disturbance amplitude on transition location. A three-dimensional

computation is needed as well in order to know more details about the nonlinear

interaction between different modes and secondary instability.
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